Spectral Compressed Sensing via Projected Gradient Descent

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Compressed Sensing via Projected Gradient Descent

Let x ∈ C be a spectrally sparse signal consisting of r complex sinusoids with or without damping. We consider the spectral compressed sensing problem, which is about reconstructing x from its partial revealed entries. By utilizing the low rank structure of the Hankel matrix corresponding to x, we develop a computationally efficient algorithm for this problem. The algorithm starts from an initi...

متن کامل

Material for “ Spectral Compressed Sensing via Projected Gradient Descent ”

We extend PGD and its recovery guarantee [1] from one-dimensional spectrally sparse signal recovery to the multi-dimensional case. Assume the underlying multi-dimensional spectrally sparse signal is of model order r and total dimension N . We show that O(r log(N)) measurements are sufficient for PGD to achieve successful recovery with high probability provided the underlying signal satisfies so...

متن کامل

Projected Wirtinger Gradient Descent for Low-Rank Hankel Matrix Completion in Spectral Compressed Sensing

This paper considers reconstructing a spectrally sparse signal from a small number of randomly observed time-domain samples. The signal of interest is a linear combination of complex sinusoids at R distinct frequencies. The frequencies can assume any continuous values in the normalized frequency domain [0, 1). After converting the spectrally sparse signal recovery into a low rank structured mat...

متن کامل

Spectral Projected Gradient Methods

The poor practical behavior of (1)-(2) has been known for many years. If the level sets of f resemble long valleys, the sequence {xk} displays a typical zig-zagging trajectory and the speed of convergence is very slow. In the simplest case, in which f is a strictly convex quadratic, the method converges to the solution with a Q-linear rate of convergence whose factor tends to 1 when the conditi...

متن کامل

Spectral Compressed Sensing via Structured Matrix Completion

The paper studies the problem of recovering a spectrally sparse object from a small number of time domain samples. Specifically, the object of interest with ambient dimension n is assumed to be a mixture of r complex multi-dimensional sinusoids, while the underlying frequencies can assume any value in the unit disk. Conventional compressed sensing paradigms suffer from the basis mismatch issue ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2018

ISSN: 1052-6234,1095-7189

DOI: 10.1137/17m1141394